Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1340910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606300

RESUMEN

Vibrios are associated with live seafood because they are part of the indigenous marine microflora. In Asia, foodborne infections caused by Vibrio spp. are common. In recent years, V. parahaemolyticus has become the leading cause of all reported food poisoning outbreaks. Therefore, the halogenated acid and its 33 derivatives were investigated for their antibacterial efficacy against V. parahaemolyticus. The compounds 3,5-diiodo-2-methoxyphenylboronic acid (DIMPBA) and 2-fluoro-5-iodophenylboronic acid (FIPBA) exhibited antibacterial and antibiofilm activity. DIMPBA and FIPBA had minimum inhibitory concentrations of 100 µg/mL for the planktonic cell growth and prevented biofilm formation in a dose-dependent manner. Both iodo-boric acids could diminish the several virulence factors influencing the motility, agglutination of fimbria, hydrophobicity, and indole synthesis. Consequently, these two active halogenated acids hampered the proliferation of the planktonic and biofilm cells. Moreover, these compounds have the potential to effectively inhibit the presence of biofilm formation on the surface of both squid and shrimp models.


Asunto(s)
Ácidos Borónicos , Vibrio parahaemolyticus , Vibrio , Biopelículas , Factores de Virulencia/farmacología , Antibacterianos/farmacología
2.
Sci Rep ; 14(1): 9160, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644387

RESUMEN

Food-related illnesses have become a growing public concern due to their considerable socioeconomic and medical impacts. Vibrio parahaemolyticus and Staphylococcus aureus have been implicated as causative organisms of food-related infections and poisoning, and both can form biofilms which confer antibiotic resistance. Hence, the need for continuous search for compounds with antibiofilm and antivirulence properties. In this study, 22 iodinated hydrocarbons were screened for their antibiofilm activity, and of these, iodopropynyl butylcarbamate (IPBC) was found to effectively control biofilm formation of both pathogens with a MIC of 50 µg/mL which was bactericidal to V. parahaemolyticus and S. aureus. Microscopic studies confirmed IPBC inhibits biofilm formation of both bacteria and also disrupted their mixed biofilm formation. Furthermore, IPBC suppressed virulence activities such as motility and hemolytic activity of V. parahaemolyticus and the cell surface hydrophobicity of S. aureus. It exhibited a preservative potential against both pathogens in a shrimp model. IPBC disrupted the cell membrane of S. aureus and V. parahaemolyticus and differentially affected gene expressions related to biofilm formation and virulence. Additionally, it displayed broad-spectrum antibiofilm activities against other clinically relevant pathogens. These findings indicate IPBC offers a potential means of controlling infections mediated by Vibrio and Staphylococcus biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Vibrio parahaemolyticus , Biopelículas/efectos de los fármacos , Vibrio parahaemolyticus/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Virulencia/efectos de los fármacos
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397101

RESUMEN

Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.


Asunto(s)
Acné Vulgar , Antiinfecciosos , Naftoquinonas , Infecciones Estafilocócicas , Animales , Ratones , Candida albicans/genética , Staphylococcus aureus , Biopelículas , Antiinfecciosos/farmacología
4.
JAMA Netw Open ; 7(2): e240209, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38376839

RESUMEN

Importance: Transportation barriers have long been associated with poorer health outcomes; this burden is especially acute for individuals with opioid use disorder (OUD), a chronic disease often associated with low socioeconomic status. Conventional travel time analyses may not fully account for experiential components of travel, thereby understating the true travel burden and overstating treatment accessibility to opioid treatment programs (OTPs). Objective: To develop a metric of feels-like accessibility for those using public transit to access OTPs that accounts for the realistic travel burden on individuals with OUD. Design, Setting, and Participants: This cross-sectional study integrated high-resolution transit schedules and operating hours of OTPs to measure feels-like accessibility. Feels-like accessibility considers the differential outcomes of out-of-vehicle travel components and more realistically reflects individuals' transportation burden than conventional accessibility measures. Gini indices and spatial regression models were used to investigate inequities in accessibility. Geocoded data for residential addresses of 1018 overdose fatalities in Connecticut in 2019 were used as a proxy for the treatment needs of individuals with OUD. Data were analyzed between May and August 2023. Main Outcomes and Measures: Conventional and feels-like accessibility scores. Exposures: Fluctuations in public transit frequencies over the course of the day and the limited operating hours of the OTPs. Results: Of the 1018 individuals in the study, the mean (SD) age at death was 43.7 (12.6) years, 784 individuals (77%) were men, 111 (11%) were African American, and 889 (87%) were White, with other racial and ethnic categories including 18 individuals (2%). A total of 264 individuals in the sample (26%) could not access an OTP within 180 minutes. For those who could access these facilities, the average 1-way travel time was 45.6 minutes, with individuals spending approximately 70% of their trip duration on out-of-vehicle travel components. The conventional accessibility metric underestimates individuals' travel burden to OTPs as well as the inequity in accessibility compared with the feels-like accessibility metric. For example, the median (range) conventional accessibility score, defined as the number of OTPs within 120 minutes of transit travel time, was 5.0 (0.0-17.0); the median (range) feels-like accessibility score, defined as the number of OTPs within 120 minutes of transit travel time weighted to account for in- and out-of-vehicle segments, was 1.0 (0.0-10.0). There is a considerable temporal variation in travel time and accessibility depending on the departure times. Conclusions and Relevance: In this cross-sectional study of travel burdens, the calculated feels-like accessibility scores, which consider the differential outcomes of out-of-vehicle travel components (eg, walking and waiting), could better and more realistically reflect passengers' transportation burden. Policy recommendations derived from the conventional accessibility metric could be misleading, and decision-makers should use feels-like accessibility metrics that adequately capture individuals' travel burdens. In the context of access to OTPs, the findings from this study suggest that opening new OTP sites to address gaps in access due to distance to services or extending hours of operation at existing sites may ameliorate the travel burden for individuals.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Masculino , Humanos , Femenino , Analgésicos Opioides/uso terapéutico , Estudios Transversales , Viaje , Transportes , Trastornos Relacionados con Opioides/epidemiología
5.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328235

RESUMEN

Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.

6.
Phytomedicine ; 124: 155306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176270

RESUMEN

BACKGROUND: Most bacteria and fungi form biofilms that attach to living or abiotic surfaces. These biofilms diminish the efficacy of antimicrobial agents and contribute to chronic infections. Furthermore, multispecies biofilms composed of bacteria and fungi are often found at chronic infection sites. PURPOSE: In this study, lawsone (2­hydroxy-1,4-naphthoquinone) and its parent 1,4-naphthoquinone were studied for antimicrobial and antibiofilm activities against single-species and multispecies biofilms of enterohemorrhagic Escherichia coli O157:H7 (EHEC) and Candida albicans. METHODS: Biofilm formation assays, biofilm eradication assays, antimicrobial assays, live cell imaging microscopy, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), extracellular polymeric substances and indole production, cell surface hydrophilicity assay, cell motility, cell aggregation, hyphal growth, dual species biofilm formation, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and toxicity assays on plant seed germination and nematode model were utilized to investigate how lawsone affect biofilm development. RESULTS: Sub-inhibitory concentrations of lawsone (35 µg/ml) significantly inhibited single-and multispecies biofilm development. Lawsone reduced the production of curli and indole, and the swarming motility of EHEC, efficiently inhibited C. albicans cell aggregation and hyphal formation, and increased the cell surface hydrophilicity of C. albicans. Transcriptomic analysis showed that lawsone suppressed the expression of the curli-related genes csgA and csgB in EHEC, and the expression of several hypha- and biofilm-related genes (ALS3, ECE1, HWP1, and UME6) in C. albicans. In addition, lawsone up to 100 µg/ml was nontoxic to the nematode Caenorhabditis elegans and to the seed growth of Brassica rapa and Triticum aestivum. CONCLUSION: These results show that lawsone inhibits dual biofilm development and suggest that it might be useful for controlling bacterial or fungal infections and multispecies biofilms.


Asunto(s)
Antiinfecciosos , Escherichia coli O157 , Naftoquinonas , Candida albicans , Biopelículas , Indoles/farmacología
7.
Colloids Surf B Biointerfaces ; 234: 113698, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070368

RESUMEN

Microbial biofilms are protected surface-attached communities of bacteria or fungi with high drug tolerance that typically cause persistent infections. Smart drug carriers are being explored as a promising platform of antimicrobials to address their recalcitrance to antibiotic agents and minimize the side effects of current therapies. In this study, soy lecithin liposomes loaded with lauric acid (LA) and myristoleic acid (MA) were formulated using an emulsification method, and their antibiofilm properties were evaluated. The physio-chemical properties of the most potent liposome were characterized using a zeta sizer, transmission electron microscopy (TEM), fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. TEM and zeta sizer analysis of the liposome revealed a homogeneous spherical structure with an average size of 159.2 nm and zeta potential of - 5.4 mV. The unilamellar liposomes loaded with LA at 0.1-0.5 µg/mL achieved obvious antibiofilm efficiency against Staphylococcus aureus and Candida albicans and their dual biofilms. Also, LA-loaded liposome formulation efficiently disrupted preformed biofilms of S. aureus and C. albicans. Furthermore, formulated liposomal LA (0.1 µg/mL) exhibited 100-fold increased dual biofilm inhibition compared to LA alone. The single biofilms and dual biofilm formation on polystyrene were reduced as determined by 3D-bright field and scanning electron microscopy. Zeta potential measurements exhibited neutralized surface charge of S. aureus, and the liposomes inhibited hyphae formation in C. albicans. These findings demonstrated that the LA-incorporated liposomes have great potential to become a new, effective, and good antibiofilm agent for treating S. aureus and C. albicans infections.


Asunto(s)
Antiinfecciosos , Liposomas , Liposomas/farmacología , Staphylococcus aureus , Ácidos Grasos/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Candida albicans , Biopelículas , Pruebas de Sensibilidad Microbiana
8.
Asia Pac J Public Health ; 36(1): 59-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38099448

RESUMEN

Despite the increasing economic burden of people with disabilities (PWDs) over time, the impact of physical activity on PWDs in the Republic of Korea (ROK) remains relatively unexplored. Thus, we examined the association between physical activity and disease risk, health care utilization, and expenditures for PWDs in the ROK. We considered gender differences across eight diseases using the National Health Insurance (NHI) panel data from 2013 to 2019. The sample consisted of PWDs who underwent regular medical check-ups and were aged 40 years and above, aligning with the NHI's health screening program targeting beneficiaries in this age range. The final sample included 281 142 healthy PWDs. Among them, 44.1% (n = 124 061) engaged in physical activity, while the remaining 45.9% (n = 157 081) did not participate in any physical activity. The results show a negative association between physical activity and the incidence of various diseases among both genders. Health care utilization exhibited gender and disease-based variations, with men and women demonstrating higher utilization rates in the absence of physical activity. Health care expenditures also differed based on gender and disease, as men and women displayed higher costs in the absence of physical activity. Consequently, public policymakers should establish tailored activity programs for PWDs, adhering to activity guidelines designed for this population.


Asunto(s)
Atención a la Salud , Personas con Discapacidad , Humanos , Masculino , Femenino , Gastos en Salud , Ejercicio Físico , Gestión de Riesgos
9.
Biofilm ; 6: 100165, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38034415

RESUMEN

Vibrio parahaemolyticus is a high-risk foodborne pathogen associated with raw or undercooked seafoods and its biofilm forming potential has become a threat to food safety and economic values. Hence, this study aims to examine the antibacterial and antibiofilm activities as well as virulence inhibitory effects of selected flavonoids against V. parahaemolyticus. Out of the sixteen flavonoid derivatives, 6-aminoflavone (6-AF), 3,2-dihydroxyflavone (3,2-DHF) and 2,2-dihydroxy-4-methoxybenzophenone (DHMB) were found as active biofilm inhibitors. 3,2-DHF and DHMB had minimum inhibitory concentrations of 20 and 50 µg/mL respectively against Vibrio planktonic cells and displayed superior antibacterial activities to standard controls. Also, they disrupted preformed biofilms and suppressed virulence properties including motilities, cell hydrophobicity and aggregation. They impaired iron acquisition mechanism and hemolysin production at sub-MICs as supported by transcriptomic studies. Interestingly, the flavonoids interfered with the metabolic activity, cell division and membrane permeability to exert antibiofilm and antibacterial activities. 6-AF and 3,2-DHF were non-toxic in the C. elegans model and showed excellent capacity to protect shrimps from biodeterioration. Furthermore, the flavonoids inhibited biofilm formation by V. harveyi, Staphylococcus aureus and Salmonella typhimurium and the mixed-species biofilm with Vibrio. This study discovered flavonoid derivatives, especially 3,2-DHF as potential bioactive compounds capable of offering protection from risks associated with biofilm formation by V. parahaemolyticus and other food pathogens.

10.
Pharmacol Rev ; 76(1): 90-141, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37845080

RESUMEN

Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Halógenos/química , Halogenación , Relación Estructura-Actividad
11.
Microbiol Spectr ; 11(6): e0173723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37874140

RESUMEN

IMPORTANCE: The persistence of Candida infections is due to its ability to form biofilms that enable it to resist antifungals and host immune systems. Hence, inhibitions of the biofilm formation and virulence characteristics of Candida sp. provide potential means of addressing these infections. Among various chromone derivatives tested, four chromone-3-carbonitriles showed antifungal, antibiofilm, and antivirulence activities against several Candida species. Their mode of action has been partially revealed, and their toxicity is reported here using nematode and plant models.


Asunto(s)
Antifúngicos , Candidiasis , Antifúngicos/farmacología , Candida , Candida albicans , Candidiasis/tratamiento farmacológico , Biopelículas , Pruebas de Sensibilidad Microbiana
12.
Front Cell Infect Microbiol ; 13: 1234668, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662002

RESUMEN

Gram-negative Vibrio species are major foodborne pathogens often associated with seafood intake that causes gastroenteritis. On food surfaces, biofilm formation by Vibrio species enhances the resistance of bacteria to disinfectants and antimicrobial agents. Hence, an efficient antibacterial and antibiofilm approach is urgently required. This study examined the antibacterial and antivirulence effects of chromones and their 26 derivatives against V. parahaemolyticus and V. harveyi. 6-Bromo-3-formylchromone (6B3FC) and 6-chloro-3-formylchromone (6C3FC) were active antibacterial and antibiofilm compounds. Both 6B3FC and 6C3FC exhibited minimum inhibitory concentrations (MICs) of 20 µg/mL for planktonic cell growth and dose-dependently inhibited biofilm formation. Additionally, they decreased swimming motility, protease activity, fimbrial agglutination, hydrophobicity, and indole production at 20 µg/mL which impaired the growth of the bacteria. Furthermore, the active compounds could completely inhibit the slimy substances and microbial cells on the surface of the squid and shrimp. The most active compound 6B3FC inhibited the gene expression associated in quorum sensing and biofilm formation (luxS, opaR), pathogenicity (tdh), and membrane integrity (vmrA) in V. parahaemolyticus. However, toxicity profiling using seed germination and Caenorhabditis elegans models suggests that 6C3FC may have moderate effect at 50 µg/mL while 6B3FC was toxic to the nematodes 20-100 µg/mL. These findings suggest chromone analogs, particularly two halogenated formylchromones (6B3FC and 6C3FC), were effective antimicrobial and antibiofilm agents against V. parahaemolyticus in the food and pharmaceutical sectors.


Asunto(s)
Antiinfecciosos , Vibrio parahaemolyticus , Animales , Antibacterianos/farmacología , Caenorhabditis elegans , Biopelículas
13.
Front Microbiol ; 14: 1224085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771707

RESUMEN

Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 µg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 µg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 µg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.

14.
Int J Biol Macromol ; 244: 125361, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37327931

RESUMEN

Copper oxide nanocarriers have attracted increasing interest in the scientific community, including antimicrobial applications. Candida biofilm developed causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Nanocarriers are a good alternative approach to solving this challenge because of their excellent penetration power inside biofilms. Hence, main objectives of this research were to prepare gum arabic-embedded L-cysteine-capped copper oxide nanocarriers (GCCuO NCs) and tested against C. albicans and explore another application. To achieve the main research objectives, GCCuO NCs were synthesized and investigated for antibiofilm potency against C. albicans. Various methods were employed to measure antibiofilm potency such as biofilm assay etc., of NCs. The nano size of GCCuO NCs is advantageous for augmenting penetration power and retention into biofilms. GCCuO NCs at 100 µg/mL exhibited significant antibiofilm activity against the C. albicans DAY185 by switching of yeast-to-hyphae and gene perturbation. The level of CR dye adsorption was 58.96 % using 30 µg/mL of NCs. Based on effective C. albicans biofilm inhibition and CR dye adsorption capacity of NCs, it can be suggested that present research work opens an innovative path to treat biofilm-associated fungal infections, and these NCs can be used for environmental remedies.


Asunto(s)
Antifúngicos , Fluconazol , Fluconazol/farmacología , Antifúngicos/farmacología , Candida albicans , Aguas Residuales , Cisteína/farmacología , Goma Arábiga/farmacología , Cobre/farmacología , Biopelículas , Óxidos/farmacología , Pruebas de Sensibilidad Microbiana
15.
Pharmaceutics ; 15(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37376127

RESUMEN

Biofilms are responsible for persistent or recurring microbial infections. Polymicrobial biofilms are prevalent in environmental and medical niches. Dual-species biofilms formed by Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus are commonly found in urinary tract infection sites. Metal oxide nanoparticles (NPs) are widely studied for their antimicrobial and antibiofilm properties. We hypothesized that antimony-doped tin (IV) oxide (ATO) NPs, which contain a combination of antimony (Sb) and tin (Sn) oxides, are good antimicrobial candidates due to their large surface area. Thus, we investigated the antibiofilm and antivirulence properties of ATO NPs against single- and dual-species biofilms formed by UPEC and S. aureus. ATO NPs at 1 mg/mL significantly inhibited biofilm formation by UPEC, S. aureus, and dual-species biofilms and reduced their main virulence attributes, such as the cell surface hydrophobicity of UPEC and hemolysis of S. aureus and dual-species biofilms. Gene expression studies showed ATO NPs downregulated the hla gene in S. aureus, which is essential for hemolysin production and biofilm formation. Furthermore, toxicity assays with seed germination and Caenorhabditis elegans models confirmed the non-toxic nature of ATO NPs. These results suggest that ATO nanoparticles and their composites could be used to control persistent UPEC and S. aureus infections.

16.
Transp Res Rec ; 2677(4): 15-27, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37153167

RESUMEN

Stay-at-home policies in response to COVID-19 transformed high-volume arterials and highways into lower-volume roads, and reduced congestion during peak travel times. To learn from the effects of this transformation on traffic safety, an analysis of crash data in Ohio's Franklin County, U.S., from February to May 2020 is presented, augmented by speed and network data. Crash characteristics such as type and time of day are analyzed during a period of stay-at-home guidelines, and two models are estimated: (i) a multinomial logistic regression that relates daily volume to crash severity; and (ii) a Bayesian hierarchical logistic regression model that relates increases in average road speeds to increased severity and the likelihood of a crash being fatal. The findings confirm that lower volumes are associated with higher severity. The opportunity of the pandemic response is taken to explore the mechanisms of this effect. It is shown that higher speeds were associated with more severe crashes, a lower proportion of crashes were observed during morning peaks, and there was a reduction in types of crashes that occur in congestion. It is also noted that there was an increase in the proportion of crashes related to intoxication and speeding. The importance of the findings lay in the risk to essential workers who were required to use the road system while others could telework from home. Possibilities of similar shocks to travel demand in the future, and that traffic volumes may not recover to previous levels, are discussed, and policies are recommended that could reduce the risk of incapacitating and fatal crashes for continuing road users.

17.
Health Policy Technol ; 12(1): 100723, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683761

RESUMEN

Objectives: The COVID-19 pandemic affected healthcare use globally. However, there have been few studies examining how it affected age-specific healthcare use by patients as related to the locations of healthcare institutions. We explore changes in healthcare use while focusing on age-specific patient groups and facility locations after the COVID-19 pandemic. Methods: We compared two databases of cross-sectional outpatient health-insurance claims that have equivalent time points yearly and quarterly both before and after the COVID-19 pandemic. We categorized patients of healthcare institutions into five age groups and two facility locations. Results: The number of claims in 2020 significantly decreased by about 15% compared to 2019. The greatest reduction was for patients aged under 20 (-43.7%), followed by the 20-39 group (-15.0%) and the 40-59 group (-11.9%). Moreover, the number of claims significantly decreased in both urban and rural areas (p< 0.001); however, the magnitude of this decrease was greater in urban areas (-15.2%) than in rural areas (-10.8%). The annual decrease in healthcare use by age groups and location of facility was still supported even after controlling for institutional covariates, except for the patient group aged 80 or over in rural areas. Conclusions: We found that the COVID-19 pandemic critically affected healthcare use across age-specific population groups and different locations of healthcare institutions. It suggests there is a need for further research and policy implications as to whether the declining healthcare use among those age groups is in core health care, and as to whether there are any unmet healthcare needs.

18.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674558

RESUMEN

Small RNA (sRNA) has become an alternate biotechnology tool for sustaining eco-agriculture by enhancing plant solidity and managing environmental hazards over traditional methods. Plants synthesize a variety of sRNA to silence the crucial genes of pests or plant immune inhibitory proteins and counter adverse environmental conditions. These sRNAs can be cultivated using biotechnological methods to apply directly or through bacterial systems to counter the biotic stress. On the other hand, through synthesizing sRNAs, microbial networks indicate toxic elements in the environment, which can be used effectively in environmental monitoring and management. Moreover, microbes possess sRNAs that enhance the degradation of xenobiotics and maintain bio-geo-cycles locally. Selective bacterial and plant sRNA systems can work symbiotically to establish a sustained eco-agriculture system. An sRNA-mediated approach is becoming a greener tool to replace xenobiotic pesticides, fertilizers, and other chemical remediation elements. The review focused on the applications of sRNA in both sustained agriculture and bioremediation. It also discusses limitations and recommends various approaches toward future improvements for a sustained eco-agriculture system.


Asunto(s)
Agricultura , ARN Pequeño no Traducido , ARN Bacteriano/genética , Biotecnología , Plantas/metabolismo , Bacterias/genética , Bacterias/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
19.
Int J Food Microbiol ; 384: 109954, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36257185

RESUMEN

Gram-negative Vibrio parahaemolyticus is a halophilic human pathogen known to be the leading cause of food poisoning associated with consuming uncooked or undercooked seafood. The increasing presence and contamination of seafood have caused serious safety concerns in food facilities. Notably, it can form biofilms on food surfaces that confer resistance to antimicrobial treatments. Therefore, in the present study, the antibacterial, antibiofilm, and antivirulence activities of hydroquinone (HQ) and its 16 derivatives were investigated against V. parahaemolyticus and V. harveyi. Representative active antibacterial and antibiofilm compounds, 2,3-dimethylhydroquinone (2,3-DMHQ) and 2,5-ditert-butylhydroquinone (DBHQ), were further examined using a crystal violet assay, biochemical reactions, live cell imaging, and scanning electron microscopy. 2,3-DMHQ with a minimum inhibitory concentration (MIC) of 20 µg/mL completely inhibited biofilm formation at a sub-MIC of 15 µg/mL. And, DBHQ with an MIC of ˃1000 µg/mL reduced biofilm formation by 70 % at sub-MIC of 25 µg/mL. Both 2,3-DMHQ and DBHQ inhibited protease and indole production as well as motility phenotypes. 2,3-DMHQ decreased fimbriae production and hydrophobicity whereas DBHQ did not. Transcriptomic studies revealed that genes related to biofilm, quorum sensing (QS), and hemolysin were downregulated. In addition, 2,3-DMHQ and DBHQ prevented biofilm formation of V. parahaemolyticus on squid surfaces and 2,3-DMHQ reduced the presence of V. parahaemolyticus in a boiled shrimp model. Toxicity assays using the Caenorhabditis elegans and seed germinations models showed that they were non-to-mildly toxic. These results suggest that 2,3-DMHQ and DBHQ possess the antimicrobial properties required to control V. parahaemolyticus planktonic and biofilm states in food production facilities.


Asunto(s)
Vibrio parahaemolyticus , Factores de Virulencia , Humanos , Hidroquinonas/farmacología , Biopelículas , Antibacterianos/farmacología
20.
Bull Menninger Clin ; 86(4): 300-315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454150

RESUMEN

Although long-acting reversible contraceptives (LARC) remain the most effective method of contraception for teenagers, most adolescents continue to use less reliable methods. The purpose of this study was to investigate possible psychological factors that may lead to this low uptake rate by studying the LARC decisionmaking process among teenagers. In-depth, semistructured, open-ended interviews of sexually active teenagers who had LARC devices placed prior to 18 years of age were conducted. Four key themes emerged from the interviews: (a) the influences of peers (friends and family members) on LARC decision-making; (b) the lack of awareness about obtaining LARC devices; (c) the fear of weight gain as a driving force during contraceptive and LARC decision-making; and (d) the disproportional anxiety about pain from LARC insertion. The results suggest that a paradigm shift in contraceptive counseling is necessary in order to tackle these psychological barriers to teenage LARC use.


Asunto(s)
Ansiedad , Anticonceptivos , Adolescente , Humanos , Investigación Cualitativa , Trastornos de Ansiedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...